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1. Introduction and Summary

Integral approximants are a special case of Hermite-Padé approximants (Hermite [21], Padé [29]) which
were introduced to modern applications by Guttmann and Joyce [19-20], Gammel [17], Guttmann [18],
Hunter and Baker [22], Fisher and Au-Yang [16], and Rehr et al. [30]. Much has been written about their
theory recently, e.g. Della Dora and Di Crescenzo [15], Della Dora [13-14], Burley et al. [11], Baumel et
al. [10], Baker [2-5] Nuttall [26-27], Baker and Lubinsky [8], Stahl [31], Baker et al. [9], and Baker and
Graves-Morris [7]. Nevertheless, so far as the authors are aware, some very basic properties of integral
approximants have not been studied to date. In the case of Padé approximants, (a special case of integral
approximants) properties of these types have been so well studied (e.g. Baker and Graves-Morris [6])
that in the minds of many of those who apply them, they are considered as obvious truisms.

As background for our studies of the integral approximants, we will now review some of these properties
for Padé approximants. First, the modern definition in terms of a given function f(z) defined by a Taylor
series at z = 0 is given in terms of two polynomials Pr,(z) and Q (=) of degrees L, M respectively, which
in turn are defined by the set of linear equations,

Quel2)f(z) — Polz) = O(FHM41), Qur(0) = 1. (L)
The approximant is then
(L)) = E 2 (12

The approximant satisfies the same accuracy through order property as was present in the polynomial
defining equations, namely,

f=IL/M] = O(z"+M+), (1.3)

by virtue of the normalization in (1.1).
The next basic property is uniqueness (Frobenius [17], Padé [28]). Suppose that there are two solutions
of (1.1), X1/Yar and Pr/Qum, then by subtraction of (1.3) for each of them and cross multiplication,

YuPr — QuXp = O(zETM+1) (1.4)

but the polynomial on the left-hand side of (1.4) is of maximum degree L + M and so is identically zero.
Thus, the [L/M] is unique.

The next property is equivalence (Padé [28], and proven with the modern definition by Chisholm [12]).
For a function g(z) which is analytic at z = 0, the statement is

l
. +=0 CtZt
o) = =@ 1.5
9(z) 1430, ezt (1.5)

if and only if,
[L/M)g=[l/m]y VL>1, M >m. (1.6)

Finally, required to prove convergence theorems, there is the existence of at least infinite subsequences
of specified type (Baker [1], Magnus [25]). In particular it has been proven that there exists at least an
infinite subsequence of the types [N/N], [N/m] and [[/N] as N — oo with [,m fixed. In fact these basic
properties are required even to begin a detailed discussion of Padé approximant theory.

In the second section we show that there does exist a definition, in terms of what we call the minimality
property, of the integral polynomials (which in their turn will be used to define the integral approximant



as the Padé polynomials were used above to define the Padé approximant) which insures that, for each
assignment of the degrees of the integral polynomials, the integral polynomials both exist and are essen-
tially unique. We also prove without the imposition of the minimality property that, if the differential
equation defining the integral approximant is of order k, then there are at most k4 1 linearly independent
solutions of the integral polynomial defining equations.

An example for Padé approximants shows what section three is about. The [1/1] Padé approximant
to the function f(z) =1+ 2% + O(2®), without the requirement Q;(0) = 1 is

Pi(z) =z Qu(z) =2, P/Qi =1, (1.7)

which fails to maintain the accuracy through order property, while if the requirement Q;(0) = 1 is
maintained, there is no [1/1]. In the third section we show that in fact there exists at least an infinite
subsequence of diagonal (all the integral polynomials are of the same nominal degree) integral polynomials
which have the property that they do not have z as a common divisor. We further show that for the
more general case of any connected, increasing sequence that it has at least an infinite subsequence for
which the integral polynomials do not have z as a common divisor. As a special case, the same is true of
partially diagonal sequences (i.e. when all the polynomial degrees which go to infinity with the sequence
index are equal to each other.) Regions in the index space describing the integral polynomials which
contain solutions of the integral polynomial defining equations reducible to a single fundamental solution
are shown to include the union of certain simplices.

The fourth section is devoted to proving an equivalence theorem for integral approximants. The class
of functions which takes the place of rational fractions (1.5) for integral approximants is the class of
functions which are the solutions of non-homogeneous, linear, ordinary differential equations of specific
order with polynomial coefficients. The fact of agreement of all higher order integral polynomials is shown
to be equivalent to the function which is being approximanted belonging to this class. An example is given
which shows that the number of series terms required to uniquely determine the integral polynomials may
not be sufficient to also uniquely determine the integral approximant.

In the last section we discuss the accuracy-through-order property for integral approximants. We find
that it is maintained for the approximants for the cases that we have analyzed.

2. Definition of Minimal Integral Polynomials

First we introduce some notation. Suppose that k and L are non-negative integers, and that my, ... ,my
are integers which are greater than or equal to -1. Then let

k
W= (mo,ma,...,mg), M= (mj+1)—1. (2.1)
=0
Py, will denote a polynomial of degree at most L, and we write

Qr=(Qo1,Q1,0,-- Qi) (2.2)

to denote a vector of polynomials ;1 of degree m, and we will suppose that QL Z 0.
Further let us be given a functional element f(z) % 0 (By a functional element we mean a partial
representation of a locally analytic function f(z), in this case, a Taylor series about z = 0 convergent in



a neighborhood.), then let
k

3 F9(2)Qs0(2) = Po(z) = O(z5+M+), (2.3)

§=0

The @, Pp are called integral polynomials of type (L,m) to f(z). The integral approximant of type
(L,m) is denoted by [L/m], which is short for [L/my;. .. ;my] in the more customary notation and is the

solution y(z) of
k

Zy(j) (2)Qj,(z) — Pr(z) =0, (2.4)

§=0

subject to the boundary conditions (usually but as we will see later not always!)
y9(0) =90, j=0,... ,k—1. (2.5)

Now the defining equation (2.3) for the integral polynomials is a system of M, linear, homogeneous
equations for the M + 1 coefficients of the @; 1(z). This system has one more unknown than it has
equations so by the standard theory of equations, there must exist a non-trivial solution for the QL, (Le.
Q1 #0). -

This solution may or may not be essentially unique. Since the equations are homogeneous, if Qr, is a
solution, then so too is CQL for any constant c. If the rank of the coefficient matrix is r < M, then there
is an M + 1 — r parameter family of solutions. However, we may prove the following multi-niqueness
theorem.

Theorem 2.1. There exist at most k + 1 linearly independent solutions (Pl(li), _'(Li)) for the integral
polynomials of type (L,m) to f(z).

Proof. Suppose that there exist k + 2 solutions of the equations for the integral polynomials. Then

k
S F@Q () - P () = (2), i =1, k42 (2:6)
7=0
where for all z, .
r(z) = O(2HMH1), (2.7)
Regarding (2.6) as a set of linear equations in the @) (2), 7=0,...,k, we have the condition,
1 1 1 1 1 1
bp o Qr P iy - Qo vy
det : . : = det : : o (2.8)
k+2 k+2 k+2 k+2 k+2 k+2
R R

for their internal consistency. Since every term on the left-hand side of (2.8) is a polynomial of degree
< M — k + L and the right hand side is ()(ZM+L+1), the left hand side must be identically zero and
therefore any k + 2 solutions must be linearly dependent. [

Note: This result is actually of wider applicability to more general Hermite-Padé approximants.

In the cases where M +1—7r > k+ 1, the extra solutions can be constructed as a linear combination of
some polynomial factors A (z) times members of the basis set of at most k+ 1 solutions. Some members
of the basis set will necessarily be of degree less than (L, ) to permit the product still to be of type
(L,m). These results suggest the definition.
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Definition 2.2. A solution for the integral polynomials of type (L,m) to f(z) is called minimal if it is
of the lowest degree in the following sense. First there ezists no other solution of type (L,m) for which
the actual degree of Q.1 is smaller. If there exist solutions of type (L,m) for which Qr,p =0, then we
minimize the degree of Qr—1,1, Qr—2,1, etc. to find the minimal solution.

Theorem 2.3, Uniqueness. For any type (L,m) there exist essentially unique integral polynomials
(PL,QL) to f(z) which are minimal.

Proof. First we saw before that a solution exists. Second, suppose that there exist two of minimal degree
where QET)L (z) is of true degree n; < mj, ¢ = 1,2, and j < k is the largest index for which the ng)L Z 0.
Then

P, Q) + (1= (P, 7)), (2.9)

is also a solution of minimal degree. Choose a such that the coefficient of 2™/ in that solution is zero. But
this result implies that n; is not the true minimal degree, contrary to assumption, which is a contradiction.
Therefore there is only one linearly independent, minimal solution. [

If Qr,z(0) # 0, when we use the normalization for Q,1(z),

(k k
fr1 I o forrme | f£+)1 f1(4+)17mk
Quo(z)=det| : : | : o] (210
(k) (k)
fm+r fum+ra fMiL-mo | | furr L+ M—my,
0 0 0 | 0---0 | 1 P

then we could have concluded a unique solution for the integral polynomials without any extra discussion.
Can we hope to impose this condition in general on the integral polynomials? For the Padé approximants
it made sense because we were given a function to approximate which was finite at z = 0. Consider the
example

2 |4
f2)=-(1=Vi-z)+2
1 1, 5 7 533
=1tz 2+ 2+ = e (2.11)

4 8 64 128 512

which is regular at z = 0. For type L =0, mo =1, m; = 2 we have
, 1.
2(1—z2)y + (1 — iz)y =1 (2.12)

The solution of (2.12) is

2 Byl—=z

s =24 20 (2.13)
Here the boundary condition that y(0) < oo requires that B = —2, and implies that y = f —z°. However
this example is singular on the second Riemann sheet at z = 0. Therefore it is required that @ 0(0) =0
in order to represent this singularity on that sheet. In this way the integral approximants are different
from the Padé approximants in that the defining equation must reflect the behavior on other Riemann
sheets than the first one and may well show singularities that are entirely absent on the first Riemann
sheet.



3. Existence of Infinite Sequences of Integral Polynomials

Manifestly, since in the previous section we have shown that for all types (L, ) the minimal integral
polynomials exist and are unique, any type of sequence must exist. In this section however we will
be concerned with the possibility of requiring some additional (desirable) properties. Clearly since the
division by a common factor would lower the degree of the leading polynomial, the minimality condition
serves to preclude the integral polynomials from having common factors of the form 1 + az. There may
however be common factors which are of the form z/. They can not be so simply divided out because to
do so would change the term O(zLT*1) on the right-hand side of the defining equations (2.3).

Let us now consider the consequences of dividing out a common factor of z/. First we shall look at
a diagonal sequence of integral approximants, [N/N;... ;N|, s.e. L = N, m; = N, i = 0,... ,k or
(L,m) = (N, N ). We have seen that there exists a minimal solution for each N, such that

Qrn(2)f ¥ (2) + -+ + Qun(2)f(2) — Py(z) = O (Z(NH)(HZ)%) . (3.1)
Now assume that P, Q is divisible by 2’ so that (3.1) can be rewritten as
Qun () fP(2) -+ Qo (2)f(2) = P(z) = O (V7DD 7101040 ) (3.9

where Qi,N_j = z_jQi,N, PN_j = 2 I Py. By inspection of the error term on the right-hand side of
(3.2) it is clear that it determines the integral polynomials of the type (N — j, N — 7), with a factor of
21(k+1) to spare. That the Q’s and P are also minimal can be seen in the following way. Eq. (3.1) implies
that

[Qen(2)fP(2) 4+ +Qon(2)f(2)2=0,n=L+1,... L+ M, (3.3)

where []™ is the section of the power series running from terms of order 2" to order z™. Thus we must
have the same set of equations for the (N — j, N ) integral polynomials,

[Qenv—;i(2)f®(z) 4+ + Qon-j(2)f(2)2=0,n=L—j+1,... , L —j+ M. (3.4)

Since the s were minimal, so too are the Q’s, provided that we restrict their degrees to be less than
or equal to N — 7. When this is done, we find that by having taken advantage of our knowledge of the
minimal solution of (3.3), we can discard the last j(k+1) equations of (3.4) as automatically over-satisfied
and then by the identity of the remaining equation of (3.4) with those of (3.3), we conclude that the Q’s
are the minimal integral polynomials of (N — j, N — 7) type.

The most that the error term in (3.1) can be reduced by this procedure, since we know QL £ 0, is by
a factor of 2V and so an error term of O(Z(N"'l)(k"'l)) remains which is sufficient to show that the error in
the reduced sequence can be made smaller than any arbitrary power of z, by going far enough. This result
in turn implies the existence of an arbitrarily large number of diagonal types of integral polynomials. For
if there were only a finite number of types, then one of them must make the integral polynomial defining
equations accurate to within an error of only an arbitrarily high power of z, which means, in fact, that
it would be a minimal integral polynomial representation for all higher order diagonal types and that is
a contradiction to the assumption that there are only a finite number of diagonal types. (It does not,
of course, preclude that they may all degenerate to be the same actual polynomials.) Therefore we can
conclude directly, since the above is true for arbitrary N, that:



Theorem 3.1. There exists at least an infinite subsequence of minimal, diagonal, integral polynomials
to a given functional clement f(z) such that Qn(0) # 0.

This property will be seen to be important later when the accuracy-through-order property of integral
approximants is discussed.

We now introduce two more definitions which specify sequences of greater generality than the diagonal
sequence. Definition 3.2 encompasses the kinds of sequences for which convergence theorems might
possibly be proven. Definition 3.3 specifies a fairly general class of sequences which includes the natural
generalizations of a staircase sequence of Padé approximants, as well as the diagonal and partially diagonal
sequences. Theorem 3.4 establishes that at least an infinite subsequence of any of these sequences of
polynomials do not all vanish at the origin.

Definition 3.2. A partially diagonal sequence of integral polynomials will be any sequence where the
elements of a given subset, N CZ ={L,m;, i =0,... .k} are set equal to the sequence index N and the
rest, L\ N % 0, remain fized.

Definition 3.3. A sequence {Li,ﬁi(")}fio of integral polynomials is said to be a connected, increasing
sequence, if both

Li> L;q,
i i-1) .
m{? >m{ Y g =01,k (3.5)
and
) - .
j:nOlf.l.).c,k{Li — Li_l,mgz) — méz )} =1 (3.6)
fori=1,23,....

An integral polynomial of type (L, M ) is called sub-minimal when it is a minimal integral polynomial
of type (I,m) < (L, M) with strict inequality in at least one of the degrees.
Theorem 3.4. Any connected, increasing sequence of integral polynomials contains an infinite subse-
quence of minimal or sub-minimal integral polynomials {lsLi,Q

such that Qm(n (0) # 0.

) J2o to a given functional element

Proof. For each index set (L;, "), let (PLi(z), Qi (z)) denote a corresponding set of k4 2 non-trivial
integral polynomials. With M; defined by

k
j=0

we note that these integral polynomials are constructed to satisfy

Qi (2 (2) 4+ 4+ Q0 (2) f(2) = Pr(2) = O(zFF M), (3.7)
Let a; be the highest power of z such that 2% factors all k£ + 2 polynomials, and for + =0,1,2,..., let
Bi =1 — aj, (3.8)

Qi (2) = 27" Q00 (2),
PLi(z) =z “P,(2),

k
Mg, =3 (mf +1) - 1.
7=0



From (3.7), it follows that

Qo (P () o+ Q0 () (2) = Pr,(2) = O(z5 Mot (3.9)
The second phase of the proof consists of showing that (PLi(z), Qi) (z)) are integral polynomials of
type (Lﬁi,rﬁ(ﬁi)). From (3.6), we have

m;l) _mglﬂl) Sz_ﬁz’ ]=051’ 7ka
L;— Lg, <1i— (i,
for each ¢, and hence, by (3.8),
mg-i) — Sm;’si), 7=0,1,...
Li — O S Lﬁi'

Therefore the degrees of (PLi(z), Qi (z)) are compatible with their being of type (Lg,, %)), From
(3.6), we have

k
L; — Lg, + Z(mgz) - mgp")) >4 — [,
j=0

and so, by (3.8),
Li+Mi_ai+12LBi+M,3i+1'

Therefore the order of contact in (3.9) suffices for (PLi,Qm(i) (z)) to be integral polynomials of type
(Lﬂu fr'L('Bi)). By construction, they have the property that

ng“ (0) ?é 0,

for each ¢ and a corresponding value of 5. The minimality property is established in the same way as it

was for Theorem 3.1, but only with respect to type (L; —a;, m® — a;) < (Lg,,m%)) and so the integral
polynomials are at least sub-minimal. ]

Corollary 3.5. There exists at least an infinite subsequence of minimal or sub-minimal, partially diag-
onal, integral polynomials to a given functional element f(z) such that Qr(0) # 0.

Proof. A special case of the previous result. ]

We are now in a position to make some remarks about the structure of the set of integral approximants
to a given functional element. Suppose that the approximant of type (A, /i) has the true degree of all the
polynomials equal to their nominal degree and Q,,(0) # 0 for some 0 < j < k. Suppose further that
the integral polynomial defining equations are over-satisfied by r > 0 powers of z. Then we can add, for
example, 0-2#*1 to @, (z) and have a solution for the (X, puo, ... s pi—1, i+ 1, flig1.... ,pr)-type integral
polynomials which is identical to the (), @) integral polynomials. In fact, by the same line of reasoning,
it follows directly that the (A, ) integral polynomials fill the simplex with vertex at X, i consistent with
the required degree of contact. In addition, if 7 > k + 2, then the polynomials zPy(z), ZQA(Z) are the



integral polynomials where every index has been advanced by unity and the integral polynomial defining
equations are over-satisfied by r — k — 1 extra powers of z. Thus the we can fill a new simplex with
these polynomials with its vertex displaced from the old one by increasing each index by unity. This
new simplex will partially fill the “r 4+ 1st layer” measured from the vertex of the original simplex, and
lying outside of it. This process can be continued until the over-satisfaction of the integral polynomial
equations is reduced to less than k+ 2, and defines the region in index space that is ocuppied by solutions
of the integral polynomial defining equations which all correspond to the same integral approximants (a
common factor in the polynomials will not change the approximants).

Let us also consider the previous class of degeneracies from another perspective. As we stated in
Section 2, the derivation of the integral polynomials Pr(z), Qr (z) of given type (L, M) is most directly
based on the solution of a set of linear equations. We express the M equations determining Q r(#) in the
form,

Aqgq =20

4=20, (3.10)

where 4, is the vector containing the M + 1 coefficients of all the Qo,1(2), Q1,0(2), ... , Qk,r(z) polyno-
mials. The case we have just discussed, in which (P,\(z), Q’)‘(z)) and (ZPA(z), ZQ’/\(Z)) are both integral

polynominals of the same specified type, is an example of a situation in which the matrix A necessarily

has rank less than M. To be specific, we will suppose that A has rank M — n. Then we may choose

any n elements of the solution vector ¢ at will. In particular, for any integers pu; > 0, satisfying
_)

w1+ po + -+ + g = n, we can arrange that

0H{Qjo(z)} <mj—p;, j=0,1,... K, (3.11)

where 9{ } denotes the true degree of the polynomial. In this way, we exhibit one family of solutions
which will include the minimal one. Another “natural family” can be defined by replacing the degree
conditions (3.11) by mixed degree and order conditions,

HQj,r(z)} <mj, Qjr(z)=0(z"), j=0,1,... ,k,

with the same conditions on p;. Despite the large number of different ways in which the integral polyno-
mials could be specified, the algebraic equations (3.10) show that fundamentally there are exactly n+1,
linearly independent solutions in the cases considered here. In the sense of polynomials, as we showed in
Theorem 2.1, there are max(n + 1,k + 1) linearly independent solutions.

In light of the results in this section, it seems reasonable to require QL (0) # 0 as part of our definition,
as we will not eliminate any essentially different, minimal, integral approximants thereby. Although the
behavior of the integral polynomials is well described, the problem of the behavior of the approximants
in the non-minimal cases is harder and we have not explored it.

Lastly, we observe that there is no reason why the subsequence of sets of integral polynomials whose
existence has been established in this section should all be distinct. Indeed, consideration of the case
where they are essentially the same is the basis of the next result.

4. Equivalence Theorem

In this section we will be concerned with the proof of an equivalence theorem of the Kronecker type.
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Theorem 4.1. The statement: (i) f(z) is a functional element at z = 0 which satisfies
Qr (2) ™) (2) + Qr—1miy () F 7V (2) + - + Qomg (2) £ (2) = Pi(2) = 0, (4.1)
with (Pl,Qm) minimal, is equivalent to: (ii) g(z) is a functional element at z =0 for which
(Pis @) = Ap 33 (Pr. Q) ¥ (L, M) > (1,m), (4.2)

where (Pr, QM) are the integral polynomials to g(z), A, 7 # 0 is a constant factor which can be normal-
ized to Ay 7 =1 and g(z) = f(z) of (i).
The subscript notation is this section varies slightly from the usages in the previous sections.

Proof. First, (i) implies (ii). Consider any (L,]\Zf) > (I,m). By eq. (4.1) (Pl,ém) is a solution of the
integral polynomial defining equation for type (L, M ), but (P, ém) is minimal by hypothesis. Therefore
we can conclude (4.2), except for the f(z) = g(z) statement which we will discuss below.

Second we must consider, does (ii) imply (i)? Thus let us now suppose that (ii) holds. Therefore we
must have,

Qbk,my (z)g(k)(z) + o+ Qo.mg (2)9(2) — Pi(z) = O(2Y), Vt < oo. (4.3)

By the minimality properties, P}, ij have no common, non-constant factors like (1 + az). As we saw in
the previous section, if we divide out any factors of z/ which may occur, (4.3) does not change, except
that m; = m; — 7, I = 1 — j, as it holds for all ¢ < oco. Since g(z) is a functional element, the left side
of (4.3) is regular at z = 0 and so, by (4.3) must be identically zero. Thus, except for the f(z) = g(z)
statement, (ii) implies (i), by analyticity.

The problem that remains to complete the proof is one of boundary conditions. Specifically we need
to show that there exists a finite N such that there is a subset of {f(¥(0), i = 0,1,... , N} which suffices
to determine the solution of (4.1) uniquely. Now it can’t be in (4.3) that Q;(0) =0, j =0,... ,k and
P;(0) # 0, since, ¢ (0) < 00, j =0,... ,k and (4.3), would imply P;(0) = 0, a contradiction. Therefore
at least for some jo,0 < jo <k, Q;,(0) #O0.

Next define v as

v =max(k — ap, bk —1—ag_1,... ,—x), (4.4)

where Q. m, (7) < z** as z — 0, and, of course, we necessarily have aj < my. Also by our construction,
aj, = 0. We can therefore immediately conclude that

Y 270 2> 0. (4.5)
Now select r as the smallest integer such that

(277 Qk(2)]2=0 = [277F T Qr—1(2)]2=0 =
= [ MTQp g1 (2))e=0 = 0, (4.6)
[Zg_k+er—'r(Z)]z:0 # Oa
where by (4.4) no negative powers of z occur in (4.6). Because g(z) is assumed to be a functional element,
we can write g(z) = 2°¢(z), where p > 0 is an integer and

oo

$(z) = 2!, o # 0. (4.7)

§=0
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In order to analyze the solution of (4.3) [or (4.1)] we can consider the indicial equation, but first we need
a little more notation. If we multiply (4.3) by 27, we get, using (4.7),

Qs (z)z””Zc;[p +j]kzj_k 4t Qo,mo(z)z7+”20jzj —2'P(z) = o(zt+7)

§=0 7=0

= = 0("), (4.8)

as t is arbitrary, where [p + jlx = (p +J)(p+75—1)-+-(p+j—k+1),and [p + jlo = 1. From (4.8), the
coefficient of cjzpﬂ will be

f(ZaP + .7) = Qk,mk (Z,)Z‘Y_k[p + ]]k + Qk—lqu—l(’z)z‘y_k—’—l[p + j]k—l +- 4 Z’yQoqu (Z)
maxy (mg+vy—k)

= Yo A+ (4.9)

A=0

and so defining fi(p + j) as the coefficients of 2> in the central expression of (4.9). Therefore we may
rewrite (4.8) as

o0

Zzp+j[cjf0(P +i) +eimifilp+i—1) 4+ +efi(p)] = 2"Pi(z) = O(2"). (4.10)

It is to be noted that the number of terms in [] in (4.10) is limited by the restriction noted in (4.9). Now
the lowest power of z comes from the 7 = 0 term and it is contained in

2Peof(p) — 27 Py(z) = 0. (4.11)

The P, term may or may not contribute depending on the values of v and p. First let us consider the
possibility that fo(p) = 0. By (4.9) it is

[27 (Qkmu (2Pl + -+ 4 Qo,mo (2))],—g = 0. (4.12)

Now by the way that we have defined r in (4.6), we see that (4.12) becomes

[zﬂy—k+erir(z)] o [Pl =0, (4.13)

so that we have a polynomial in p of degree k — r exactly. If » = 0, then the origin is a regular singular
point. If r < k, then fo(p) is in fact a polynomial in p and is not identically zero. On the other hand,
if r = k, Ince [23] has proven that there do not exist any regular solutions of (4.3), but g(z) is a regular
solution, therefore, r < k, and fo(p) Z 0.

We are only concerned with those roots which are integers and which obey

P> Pg(z)s (4.14)

where py(,) is that p defined by g(z) through (4.7). Now, referring to (4.11), we see that there are several
cases to consider. In case (1), p < 1, the indicial equation from (4.11) becomes

cofo(p) =0, = folp) =0as co #0. (4.15)
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If we use the notation,
l
Pi(z) =) pi7’, and define p; =0 if i <0 ori > 1, (4.16)
=0

then the recursion relations for the coefficients in (4.7) are
Cofo(,D) —Dp—y = 0,
cifolp+1)+cofi(p) — po—vys1 =0,

: (4.17)
cifolp+3)+-+cofi(p) = pp—vy+j =0,

Thus to specify all the ¢; we need ¢y and up to k —r — 1 more ¢; which correspond to the integer roots
of fo(p+ 7) which satisfy the restriction (4.14).
In the simple case, where all the a; =0, 0 < 7 <Kk,

folp) = [plx, (4.18)
and has zeros for p = 0,1,... ,k — 1 so we get the standard boundary condition requirement that
C0,€1,--. ,Cr—1 determine (together, of course, with the differential equation) the explicit unique solution.

In general, in this case, the required set of boundary conditions is an explicit set of < k ¢;’s derived from
the structure of the differential equation for g(z). Thus the equation plus known boundary conditions
give an explicit construction of a unique (in the sense of analytic continuation) functional element. But
g(z) is such an element and the equation is minimal, therefore in case (1) f(z) = g(z), so (ii) implies (i).

Now consider case (2) where p > v+ I. Again, P;(z) does not contribute to the indicial equation, so
the result is the same here as in case (1) and again we conclude that (ii) implies (i).

Finally, in case (3) v < p < v+ [. The indicial equation becomes, from (4.11),

fo(p) = pp—v/co = 0. (4.19)

This equation is, of course, satisfied by hypothesis, by the p, ¢y which come from g(z). There are at most
k —r < k additional possible integer zeros of fo(p + 7). If r > 1, then the assignment of at most k ¢;’s
suffices to determine the solution uniquely, and it must be g(z).

If r = 0, then there is the possibility that all £ solutions of the differential equation are regular and
non-singular. As p,_,/co # 0 [if it were then we would be in either case (1) or case (2)] there can be k
roots of fo(p) = 0 and so we would seem to need up to k more ¢;’s besides ¢y, whereas there are only,
at most, k linearly independent solutions of the differential equation. However, the boundary conditions
always implicitly specify p and in this case, p implies ¢y by eq. (4.19), so it is not an independent constant.
Therefore, we really need at most only k ¢;’s and thus again (ii) implies (i). [ ]

An interesting example is relevant at this point. It shows that in general, in contrast to the Padé
approximant case, the series coefficients which suffice to determine uniquely the integral polynomials of a
particular type may not determine the integral approximant uniquely. Consider f(z) determined by the
equation,

2f" —9f + 2f = 2z. (4.20)
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The solution is necessarily an even function of z, and the indicial equation is
p(p—10) =0, (4.21)

provided p = 2 is not a root, which it is not. The [1/1;0;1] approximant requires the series coefficients
through order 2° in f” or equivalently through order 27 in f(z). Nevertheless, by (4.17), since fy(10) = 0,
the construction of a unique solution for the approximant requires a knowledge of c;9. However the series
for the solution of the differential equation through O(z?) may still be determined uniquely from ¢y = 1
and is, for reference,

22 P 2° 28

1) =1~ 16~ 3851~ 5216~ Tarazg T O ) (4.22)

It can be verified by an easy computation that this section of the Taylor series also determines the
[1/1;0; 1] integral polynomials uniquely, once some coefficient is fixed, e.g. @Q5; = 1. The nature of the
theorem we have proven in this section is such that we do not need to confront this source of possible
non-uniqueness as assumptions are made concerning all the series coefficients.

5. Accuracy through Order Properties of Integral Approximants
As a reminder, in the case of Padé approximants, the defining equations

Qu(2)f(2) — Pr(z) = O(z""MH), Qu(0) =1, (5.1)

may readily be solved to yield an approximant to f(z) with the accuracy,

P(z) — O+ M+1
f(Z)— QM(Z) _O( Rl ) (52)

The situation in the integral approximant case is more complicated. The given functional element f(z)
satisfies the equation

Qrami (2) ] (2) 4+ 4 Qomg (2)](2) = Pr(2) = r(2) = O(2HMHY), (5-3)

in the notation of (2.1), which defines the remainder term r(z). The integral approximant is the solution
of

Qrm (209 (2) + - + Qo,mo (2)y(2) — Pr(z) = 0. (5.4)
The difference or error term, d(z) = f(z) — y(z) satisfies
Qb (2)dP (2) + -+ 4 Qo my (2)d(2) = 7(2). (5.5)

Let ¢,(2z), v = 1,... ,k be a set of principal solutions of the homogeneous version of (5.5). For our
discussion we will assume that z = 0 is at worst a regular singular point. In terms of the ¢,’s the solution
of the non-homogeneous eq. (5.5) is (Kamke [24])

d(z) = Z(/)U( )/ T Wy (wa(o (k> 1), (5.6)
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where W (() is the Wronskian,

W(C¢) =det| A (5.7)

¢(k—.1)(‘<) ¢§ck—.1)(<)
and W, (¢) replaces the vth column of W by
0
(') (5.8)
)

If every principal solution ¢, is regular at z = 0, then Q) m, (0) # 0 which implies that W(0) # 0 as

by Abel’s formula,
<M) (5.9)

Qk,mk (f)

where < denotes proportional to as usual. Also in this case W, (¢) is finite and at ( = 0 and proportional
to (LTM+1 which in turn, by (5.6), implies that

W(C) o exp (—

d(z) < O(ZETMT2) | > 1, (5.10)

so in this case the solution preserves the accuracy-through-order of the remainder term in the integral
polynomial determining equations and even improves it slightly. [The case k = 0 is treated in (5.2).]

If instead of all the principal solutions being regular at z = 0, they all possess regular singularities
(without logarithms which only mess up the discussion and don’t dramatically change the result), then
we have

du(z) x 2™, as z = 0. (5.11)

(Of course, it can not really be this way as at least one of the solutions must be regular by hypothesis,
but we will discuss an intermediate case below which can encompass the actual one.) In this case,

W(C) C[E};l rk—o.sk(k+1)]7 (5.12)

and

b Wl¢) o (2) T glE s, (5.13)

So near z = 0,

k , \
- (O (/¢ ¢E
dlz) o 2_:1/ Qe (C)

o O (L MHith-ax) (5.14)
But if we have all regular singular solutions (and 2z is not a factor of P, Q as we have discussed in previous

sections), then ay = k. Therefore,

d(2) oc O(2LHMHLY, (5.15)
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and the accuracy-through-order property is again preserved.

For the cases where there are some regular solutions and the rest of the solutions correspond to regular
singularities, Abel’s formula still gives the Wronskian as a power of { near { = 0, and it also can give
W, (¢) as the Wronskian of a reduced differential equation of order k — 1. The result is a formula much
like (5.14) but with a few minor modifications, which do not particularly affect the order of the error
term.

We have not analyzed the accuracy through order properties at irregular singular points. Certainly it
is an exceptional case even for a regular solution (known by hypothesis to occur for our case) to occur at
an irregular singular point.
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